js原型链之大话西游—简单粗暴地理解JavaScript原型链
Author:[email protected] Date:
这几篇文章的笔记:
再谈js数据类型与对象数据结构底层实现原理-object array map set https://www.zhoulujun.cn/html/webfront/ECMAScript/js6/2016_0219_7607.html
再谈javascriptjs原型与原型链及继承相关问题 https://www.zhoulujun.cn/html/webfront/ECMAScript/js6/2015_0715_119.html
好文要顶之 --- 简单粗暴地理解 JavaScript https://www.cnblogs.com/libin-1/p/5819067.html
大话西游记解说面向设计模式 https://github.com/ljc313282038/Object-oriented-module
JavaScript new 关键词解析及原生实现 new https://www.zhoulujun.cn/html/webfront/ECMAScript/js/2020_0630_8498.html
instanceof运算符的实质:Java继承链与JavaScript原型链 https://www.zhoulujun.cn/html/webfront/ECMAScript/js/2015_1231_8493.html
随便拉一个码农估计都会写JS,大部分也知道JS是基于原型的语言,但是如果问及JS原生对象(Object,Function,Array,Date等)的这个原型链长什么样子?估计能回答出来的人就少了,特别是没有学过java的小鸟们,继承是啥?
继承是OO语言中的一个最为人津津乐道的概念。ECMAScript只支持实现继承,而且其实现继承主要是依靠原型链来实现的。
不像JAVA是完全OOP的语言:class是一类具有共同特点的物体的抽象,object是某个class下具体的一个实现,Object类是所有类的顶层父类,对Java的认知是从类与对象开始的(javascript万物皆对象);Javascript则不然,它是从类型(type)开始,在各类语言中遇到的number,string, boolean, object, function,array等都属于类型。这里总结为两大类:原生类型与对象类型,
原生类型包括:number,string, bool, null, undefined;
非原生类型对象都属于对象类型,包括:object, array, function等
那这里的object专指具有属性(attribute)的对象,在判断某个值是什么大的类型没有意义,往往需要判断它是什么原生类型或者对象类型:
判断原生类型,可以使用typeof关键字;
判断对象类型,可以使用toString()方法;
这个是茄子写:简单粗暴地理解JavaScript原型链处 感觉写的特别好,拿过来来排版整理下,觉得能更快理解!
function Person (name) { this.name = name; } function Mother () { } Mother.prototype = { //Mother的原型 age: 18, home: ['Beijing', 'Shanghai'] }; Person.prototype = new Mother(); //Person的原型为Mother //用chrome调试工具查看,提供了__proto__接口查看原型,这里有两层原型,各位还是直接看chrome好一点。 var p1 = new Person('Jack'); //p1:'Jack'; __proto__:{__proto__:18,['Beijing','Shanghai']} var p2 = new Person('Mark'); //p2:'Mark'; __proto__:{__proto__:18,['Beijing','Shanghai']} p1.age = 20; /* 实例不能改变原型的基本值属性,正如你洗剪吹染黄毛跟你妈无关 * 在p1实例下增加一个age属性的普通操作,与原型无关。跟var o={}; o.age=20一样。 * p1:下面多了个属性age,而__proto__跟 Mother.prototype一样,age=18。 * p2:只有属性name,__proto__跟 Mother.prototype一样 */ p1.home[0] = 'Shenzhen'; /* 原型中引用类型属性的共享,正如你烧了你家,就是烧了你全家的家 * 这个先过,下文再仔细唠叨一下可好? * p1:'Jack',20; __proto__:{__proto__:18,['Shenzhen','Shanghai']} * p2:'Mark'; __proto__:{__proto__:18,['Shenzhen','Shanghai']} */ p1.home = ['Hangzhou', 'Guangzhou']; /* 其实跟p1.age=20一样的操作。换成这个理解: var o={}; o.home=['big','house'] * p1:'Jack',20,['Hangzhou','Guangzhou']; __proto__:{__proto__:18,['Shenzhen','Shanghai']} * p2:'Mark'; __proto__:{__proto__:18,['Shenzhen','Shanghai']} */ delete p1.age; /* 删除实例的属性之后,原本被覆盖的原型值就重见天日了。正如你剃了光头,遗传的迷人小卷发就长出来了。 * 这就是向上搜索机制,先搜你,然后你妈,再你妈他妈,所以你妈的改动会动态影响你。 * p1:'Jack',['Hangzhou','Guangzhou']; __proto__:{__proto__:18,['Shenzhen','Shanghai']} * p2:'Mark'; __proto__:{__proto__:18,['Shenzhen','Shanghai']} */ Person.prototype.lastName = 'Jin'; /* 改写原型,动态反应到实例中。正如你妈变新潮了,邻居提起你都说你妈真潮。 * 注意,这里我们改写的是Person的原型,就是往Mother里加一个lastName属性,等同于Mother.lastName='Jin' * 这里并不是改Mother.prototype,改动不同的层次,效果往往会有很大的差异。 * p1:'Jack',['Hangzhou','Guangzhou']; __proto__:{'jin',__proto__:18,['Shenzhen','Shanghai']} * p2:'Mark'; __proto__:{'jin',__proto__:18,['Shenzhen','Shanghai']} */ Person.prototype = { age: 28, address: { country: 'USA', city: 'Washington' } }; var p3 = new Person('Obama'); /* 重写原型!这个时候Person的原型已经完全变成一个新的对象了,也就是说Person换了个妈,叫后妈。 * 换成这样理解:var a=10; b=a; a=20; c=a。所以b不变,变得是c,所以p3跟着后妈变化,与亲妈无关。 * p1:'Jack',['Hangzhou','Guangzhou']; __proto__:{'jin',__proto__:18,['Shenzhen','Shanghai']} * p2:'Mark'; __proto__:{'jin',__proto__:18,['Shenzhen','Shanghai']} * p3:'Obama';__proto__: 28 {country: 'USA', city: 'Washington'} */ Mother.prototype.no = 9527; /* 改写原型的原型,动态反应到实例中。正如你妈他妈变新潮了,邻居提起你都说你丫外婆真潮。 * 注意,这里我们改写的是Mother.prototype,p1p2会变,但上面p3跟亲妈已经了无瓜葛了,不影响他。 * p1:'Jack',['Hangzhou','Guangzhou']; __proto__:{'jin',__proto__:18,['Shenzhen','Shanghai'],9527} * p2:'Mark'; __proto__:{'jin',__proto__:18,['Shenzhen','Shanghai'],9527} * p3:'Obama';__proto__: 28 {country: 'USA', city: 'Washington'} */ Mother.prototype = { car: 2, hobby: ['run','walk'] }; var p4 = new Person('Tony'); /* 重写原型的原型!这个时候Mother的原型已经完全变成一个新的对象了!人他妈换了个后妈! * 由于上面Person与Mother已经断开联系了,这时候Mother怎么变已经不影响Person了。 * p4:'Tony';__proto__: 28 {country: 'USA', city: 'Washington'} */ Person.prototype = new Mother(); //再次绑定 var p5 = new Person('Luffy'); // 这个时候如果需要应用这些改动的话,那就要重新将Person的原型绑到mother上了 // p5:'Luffy';__proto__:{__proto__: 2, ['run','walk']} p1.__proto__.__proto__.__proto__.__proto__ //null,你说原型链的终点不是null? Mother.__proto__.__proto__.__proto__ //null,你说原型链的终点不是null?
看完基本能理解了吧?
现在再来说说 p1.age = 20、p1.home = ['Hangzhou', 'Guangzhou'] 和 p1.home[0] = ‘Shenzhen’ 的区别。 p1.home[0] = ‘Shenzhen’; 总结一下是 p1.object.method,p1.object.property 这样的形式。
p1.age = 20; p1.home = ['Hangzhou', 'Guangzhou'];这两句还是比较好理解的,先忘掉原型吧,想想我们是怎么为一个普通对象增加属性的:
var obj = new Object(); obj.name='xxx'; obj.num = [100, 200];
这样是不是就理解了呢?一样一样的呀。
那为什么 p1.home[0] = ‘Shenzhen’ 不会在 p1 下创建一个 home 数组属性,然后将其首位设为 ’Shenzhen’呢? 我们还是先忘了这个,想想上面的obj对象,如果写成这样: var obj.name = ‘xxx’, obj.num = [100, 200],能得到你要的结果吗? 显然,除了报错你什么都得不到。因为obj还未定义,又怎么能往里面加入东西呢?同理,p1.home[0]中的 home 在 p1 下并未被定义,所以也不能直接一步定义 home[0] 了。如果要在p1下创建一个 home 数组,当然是这么写了:
p1.home = []; p1.home[0] = 'Shenzhen';
这不就是我们最常用的办法吗?
而之所以 p1.home[0] = ‘Shenzhen’ 不直接报错,是因为在原型链中有一个搜索机制。当我们输入 p1.object 的时候,原型链的搜索机制是先在实例中搜索相应的值,找不到就在原型中找,还找不到就再往上一级原型中搜索……一直到了原型链的终点,就是到null还没 找到的话,就返回一个 undefined。当我们输入 p1.home[0] 的时候,也是同样的搜索机制,先搜索 p1 看有没有名为 home 的属性和方法,然后逐级向上查找。最后我们在Mother的原型里面找到了,所以修改他就相当于修改了 Mother 的原型啊。
一句话概括:p1.home[0] = ‘Shenzhen’ 等同于 Mother.prototype.home[0] = ’Shenzhen’。
由上面的分析可以知道,原型链继承的主要问题在于属性的共享,很多时候我们只想共享方法而并不想要共享属性,理想中每个实例应该有独立的属性。因此,原型继承就有了下面的两种改良方式:
1)组合继承
function Mother (age) { this.age = age; this.hobby = ['running','football'] } Mother.prototype.showAge = function () { console.log(this.age); }; function Person (name, age) { Mother.call(this, age); //第二次执行 this.name = name; } Person.prototype = new Mother(); //第一次执行 Person.prototype.constructor = Person; Person.prototype.showName = function () { console.log(this.name); } var p1 = new Person('Jack', 20); p1.hobby.push('basketball'); //p1:'Jack'; __proto__:20,['running','football'] var p2 = new Person('Mark', 18); //p2:'Mark'; __proto__:18,['running','football']
结果是酱紫的:
这里第一次执行的时候,得到 Person.prototype.age = undefined, Person.prototype.hobby = ['running','football'],第二次执行也就是 var p1 = new Person(‘Jack’, 20) 的时候,得到 p1.age =20, p1.hobby = ['running','football'],push后就变成了 p1.hobby = ['running','football', 'basketball']。其实分辨好 this 的变化,理解起来也是比较简单的,把 this 简单替换一下就能得到这个结果了。 如果感觉理解起来比较绕的话,试着把脑子里面的概念扔掉吧,把自己当浏览器从上到下执行一遍代码,结果是不是就出来了呢?
通过第二次执行原型的构造函数 Mother(),我们在对象实例中复制了一份原型的属性,这样就做到了与原型属性的分离独立。细心的你会发现,我们第一次调用 Mother(),好像什么用都没有呢,能不调用他吗?可以,就有了下面的寄生组合式继承。
2)寄生组合式继承
function object(o){ function F(){} F.prototype = o; return new F(); } function inheritPrototype(Person, Mother){ var prototype = object(Mother.prototype); prototype.constructor = Person; Person.prototype = prototype; } function Mother (age) { this.age = age; this.hobby = ['running','football'] } Mother.prototype.showAge = function () { console.log(this.age); }; function Person (name, age) { Mother.call(this, age); this.name = name; } inheritPrototype(Person, Mother); Person.prototype.showName = function () { console.log(this.name); } var p1 = new Person('Jack', 20); p1.hobby.push('basketball');//p1:'Jack'; __proto__:20,['running','football'] var p2 = new Person('Mark', 18); //p2:'Mark'; __proto__:18,['running','football']
结果是酱紫的:
原型中不再有 age 和 hobby 属性了,只有两个方法,正是我们想要的结果!
关键点在于 object(o) 里面,这里借用了一个临时对象来巧妙避免了调用new Mother(),然后将原型为 o 的新对象实例返回,从而完成了原型链的设置。很绕,对吧,那是因为我们不能直接设置 Person.prototype = Mother.prototype 啊。
实例在分析:
//父类构造函数 function Parent() { this.name = "baba"; } //父类原型方法 Parent.prototype.getName = function () { return this.name; } //子类构造函数 function Child() { this.name = "cc"; } //类式继承 classInherit(Parent, Child); //实例 var child = new Child(); alert(child.getName()) //“baba”
下面我们来看看这个继承的关键方法:classInherit(Parent,Child)
var classInherit = (function () { var F = function () { } return function (P, C) { F.prototype = P.prototype; C.prototype = new F(); C.prototype.constructor = C; } }());
分析一下这个方法:
首先创建一个空的构造函数F(),用其实例的_proto_属性来构建父类与子类的原型链。起到一个代理的作用,目的是为了防止C.prototype = P.prototype,这样会在子类实例化后修改属性或方法时候,连同父类一起修改。整体采用即时函数并且在闭包中存储F(),防止多次继承时候创建大量的空的构造函数,从而减少消耗内存。最后一行的意思是,由于原型链的关系,C的实例对象的constructor会指向P,所以重新设置。
3)复制继承
//复制继承 function copyInherit(p, c) { var i, toStr = Object.prototype.toString, astr = "[object Array]"; c = c || {}; for (i in p) { if (p.hasOwnProperty(i)) { if (typeof p[i] === "object") { c[i] = toStr.call(p[i]) == astr ? [] : {}; c[i] = copy(p[i], c[i]); } else { c[i] = p[i]; } } } return c; } //重写Parent function Parent() { this.name = "pp"; this.obj= {a:1,b:2}; this.arr= [1, 2] } //实例 var child = new Child(); var parent = new Parent(); copyInherit(parent, child); alert(child.name) //"baba" alert(child.arr) //1,2 alert(child.obj.a) //1
分析下copyInherit(p,c)
当一个值赋予一个变量时候,分为传值和传引用两种方式,当你父对象内属性包含数组类型或是对象类型时候, c[i] = toStr.call(p[i]) == astr ? [] : {};这一句会避免修改子对象属性而引起的父对象属性被篡改。
小结
说了这么多,其实核心只有一个:属性共享和独立的控制,当你的对象实例需要独立的属性,所有做法的本质都是在对象实例里面创建属性。若不考虑太多, 你大可以在Person里面直接定义你所需要独立的属性来覆盖掉原型的属性。总之,使用原型继承的时候,要对于原型中的属性要特别注意,因为他们都是牵一 发而动全身的存在。
下面简单罗列下js中创建对象的各种方法,现在最常用的方法是组合模式,熟悉的同学可以跳过到文章末尾点赞了。
1)原始模式
//1.原始模式,对象字面量方式 var person = { name: 'Jack', age: 18, sayName: function () { alert(this.name); } }; //1.原始模式,Object构造函数方式 var person = new Object(); person.name = 'Jack'; person.age = 18; person.sayName = function () { alert(this.name); };
显然,当我们要创建批量的person1、person2……时,每次都要敲很多代码,资深copypaster都吃不消!然后就有了批量生产的工厂模式。
2)工厂模式
/2.工厂模式,定义一个函数创建对象 function creatPerson (name, age) { var person = new Object(); person.name = name; person.age = age; person.sayName = function () { alert(this.name); }; return person; }
工厂模式就是批量化生产,简单调用就可以进入造人模式(啪啪啪……)。指定姓名年龄就可以造一堆小宝宝啦,解放双手。但是由于是工厂暗箱操作的,所 以你不能识别这个对象到底是什么类型、是人还是狗傻傻分不清(instanceof 测试为 Object),另外每次造人时都要创建一个独立的temp对象,代码臃肿,雅蠛蝶啊。
3)构造函数
//3.构造函数模式,为对象定义一个构造函数 function Person (name, age) { this.name = name; this.age = age; this.sayName = function () { alert(this.name); }; } var p1 = new Person('Jack', 18); //创建一个p1对象 Person('Jack', 18); //属性方法都给window对象,window.name='Jack',window.sayName()会输出Jack
构造函数与C++、JAVA中类的构造函数类似,易于理解,另外Person可以作为类型识别(instanceof 测试为 Person 、Object)。但是所有实例依然是独立的,不同实例的方法其实是不同的函数。这里把函数两个字忘了吧,把sayName当做一个对象就好理解了,就是 说张三的 sayName 和李四的 sayName是不同的存在,但显然我们期望的是共用一个 sayName 以节省内存。
构造函数、原型和实例之间的关系
①+Object
②+Function+Object+Array
来个绕口令:
function Foo1() { this.name1 = '1'; } function Foo2() { this.name2 = '2'; } Foo2.prototype = new Foo1(); function Foo3() { this.name = '3'; } Foo3.prototype = new Foo2(); var foo3 = new Foo3(); console.dir(foo3);
存在的问题:可以解决原型继承当中传参问题,但是父类型当中的原型对象上的成员(属性和方法)不能被继承到
4)原型模式
//4.原型模式,直接定义prototype属性 function Person () {} Person.prototype.name = 'Jack'; Person.prototype.age = 18; Person.prototype.sayName = function () { alert(this.name); }; //4.原型模式,字面量定义方式 function Person () {} Person.prototype = { name: 'Jack', age: 18, sayName: function () { alert(this.name); } }; var p1 = new Person(); //name='Jack' var p2 = new Person(); //name='Jack'
这里需要注意的是原型属性和方法的共享,即所有实例中都只是引用原型中的属性方法,任何一个地方产生的改动会引起其他实例的变化。
值得注意的是,这里存在两个主要的问题:
①它不方便给父级类型传递参数;
②父级类型当中的引用类型被所有的实例共享
5)混合模式(构造+原型)
//5. 原型构造组合模式, function Person (name, age) { this.name = name; this.age = age; } Person.prototype = { hobby: ['running','football']; sayName: function () { alert(this.name); }, sayAge: function () { alert(this.age); } }; var p1 = new Person('Jack', 20); //p1:'Jack',20; __proto__: ['running','football'],sayName,sayAge var p2 = new Person('Mark', 18); //p1:'Mark',18;__proto__: ['running','football'],sayName,sayAge
做法是将需要独立的属性方法放入构造函数中,而可以共享的部分则放入原型中,这样做可以最大限度节省内存而又保留对象实例的独立性。
总结:
1.原型和原型链是JS实现继承的一种模型。
2.原型链的形成是真正是靠__proto__ 而非prototype
要深入理解这句话,我们再举个例子,看看前面你真的理解了吗?
var animal = function(){}; var dog = function(){}; animal.price = 2000;// dog.prototype = animal; var tidy = new dog(); console.log(dog.price) //undefined console.log(tidy.price) // 2000
为什么呢?画一下内存图:
这说明什么问题呢,执行dog.price的时候,发现没有price这个属性,虽然prototype指向的animal有这个属性,但它并没有去沿着这个“链”去寻找。同样,执行tidy.price的时候,也没有这个属性,但是__proto__指向了animal,它会沿着这个链去寻找,animal中有price属性,所以tidy.price输出2000。由此得出,原型链的真正形成是靠的__proro__,而不是prototype。
因此,如果在这样指定dog.__proto__ = animal。那dog.price = 2000。
最后打个比喻,虽然不是很确切,但可能对原型的理解有些帮助。
父亲(函数对象),先生了一个大儿子(prototype),也就是你大哥,父亲给你大哥买了好多的玩具,当你出生的时候,你们之间的亲情纽带(__proto__)会让你自然而然的拥有了你大哥的玩具。同样,你也先生个大儿子,又给他买了好多的玩具,当你再生儿子的时候,你的小儿子会自然拥有你大儿子的所有玩具。至于他们会不会打架,这不是我们的事了。
所以说,你是从你大哥那继承的,印证了那句“长兄如父”啊!
不要纠结于那一堆术语了,那除了让你脑筋拧成麻花,真的不能帮你什么。简单粗暴点看原型链吧,想点与代码无关的事,比如人、妖以及人妖。
1)人是人他妈生的,妖是妖他妈生的。人和妖都是对象实例,而人他妈和妖他妈就是原型。原型也是对象,叫原型对象。
2)人他妈和人他爸啪啪啪能生出一堆人宝宝、妖他妈和妖他爸啪啪啪能生出一堆妖宝宝,啪啪啪就是构造函数,俗称造人。
3)人他妈会记录啪啪啪的信息,所以可以通过人他妈找到啪啪啪的信息,也就是说能通过原型对象找到构造函数。
4)人他妈可以生很多宝宝,但这些宝宝只有一个妈妈,这就是原型的唯一性。
5)人他妈也是由人他妈他妈生的,通过人他妈找到人他妈他妈,再通过人他妈他妈找到人他妈他妈……,这个关系叫做原型链。
6)原型链并不是无限的,当你通过人他妈一直往上找,最后发现你会发现人他妈他妈他妈……的他妈都不是人,也就是原型链最终指向null。
7)人他妈生的人会有人的样子,妖他妈生的妖会有妖的丑陋,这叫继承。
8)你继承了你妈的肤色,你妈继承了你妈他妈的肤色,你妈他妈……,这就是原型链的继承。
9)你没有家,那你家指的就是你妈家;你妈也没有家,那你家指的就是你妈他妈家……这就是原型链的向上搜索。
10)你会继承你妈的样子,但是你也可以去染发洗剪吹,就是说对象的属性可以自定义,会覆盖继承得到的属性。
11)虽然你洗剪吹了染成黄毛了,但你不能改变你妈的样子,你妈生的弟弟妹妹跟你的黄毛洗剪吹没一点关系,就是说对象实例不能改动原型的属性。
12)但是你家被你玩火烧了的话,那就是说你家你妈家你弟们家都被烧了,这就是原型属性的共享。
13)你妈外号阿珍,邻居大娘都叫你阿珍儿,但你妈头发从飘柔做成了金毛狮王后,隔壁大婶都改口叫你金毛狮王子,这叫原型的动态性。
14)你妈爱美,又跑到韩国整形,整到你妈他妈都认不出来,即使你妈头发换回飘柔了,但隔壁邻居还是叫你金毛狮王子。因为没人认出你妈,整形后的你妈已经回炉再造了,这就是原型的整体重写。
尼玛!你特么也是够了!!
参考文章:
http://2660311.blog.51cto.com/2650311/1358226/
转载本站文章《js原型链之大话西游—简单粗暴地理解JavaScript原型链》,
请注明出处:https://www.zhoulujun.cn/html/webfront/ECMAScript/js6/2016_1227_7929.html
延伸阅读:
- Chrome的控制台:Console标签调试代码的函数分析
- ECMAScript进化史(1):话说Web脚本语言王者JavaScript的加冕历史
- 浏览器把JSON导出转为excel下载到本地
- JS关键字和保留字汇总
- 从λ演算到函数式编程聊闭包(2):彻底理解JavaScript闭包规则
- ECMAScript进化史(3):ES5/ES6/ES7/ES8/ES9/ES10新特性大盘点
- JSHint 配置参数浅析
- JavaScript OPP编程分析:构造函数实现继承于非构造函数继承
- JS正则表达式详解
- 获取Javascript脚本文件的路径:回顾js数组常用操
- JS replace函数正则表达式细讲:获取url参数与重复字母统计
- 图说js中的this——深入理解javascript中this指针
- localStorge之storage事件