• home > DB > mysql >

    再谈mysql索引—索引建立、存储结构、存储格式、存储模型

    Author:zhoulujun Date:

    为啥使用索引数据库的检索速度加快,插入、删除、修改等维护任务的速度降低?索引最左匹配原则是啥?聚集索引、非聚集索引,Hash索引、B+树索引有什么区别?索引的存储结构、存储格式、存储模式、优化手段说一下?

    对于 MySQL 数据库而言,数据是存储在文件里的,而为了能够快速定位到某张表里的某条记录进行查询和修改,我们需要将这些数据以一定的数据结构进行存储,这个数据结构就是我们说的索引。

    什么是索引

    索引就像一本书的目录。而当用户通过索引查找数据时,就好比用户通过目录查询某章节的某个知识点。这样就帮助用户有效地提高了查找速度。所以,使用索引可以有效地提高数据库系统的整体性能。

    索引,类似书籍的目录,可以根据目录的某个页码立即找到对应的内容。

    • 索引的优点:1. 天生排序。2. 快速查找。

    • 索引的缺点:1. 占用空间。2. 降低更新表的速度。

    注意点:小表使用全表扫描更快,中大表才使用索引。超级大表索引基本无效。

    索引从实现上说,分成 2 种:聚集索引和辅助索引(也叫二级索引或者非聚集索引)

    从功能上说,分为 6 种:普通索引,唯一索引,主键索引,复合索引,外键索引,全文索引。

    • 普通索引:最基本的索引,没有任何约束。

    • 唯一索引:与普通索引类似,但具有唯一性约束。

    • 主键索引:特殊的唯一索引,不允许有空值。

    • 复合索引:将多个列组合在一起创建索引,可以覆盖多个列。

    • 外键索引:只有InnoDB类型的表才可以使用外键索引,保证数据的一致性、完整性和实现级联操作。

    • 全文索引:MySQL 自带的全文索引只能用于 InnoDB、MyISAM ,并且只能对英文进行全文检索,一般使用全文索引引擎(ES,Solr)。

    注意:主键就是唯一索引,但是唯一索引不一定是主键,唯一索引可以为空,但是空值只能有一个,主键不能为空。

    InnoDB 通过主键聚簇数据,如果没有定义主键且没有定义聚集索引, MySql 会选择一个唯一的非空索引代替,如果没有这样的索引,会隐式定义个 6 字节的主键作为聚簇索引,用户不能查看或访问

    怎么建立索引

    支持快速查找的数据结构有:顺序数组、哈希、搜索树。

    顺序数组、哈希、搜索树

    数组要求插入的时候保证有序,这样查找的时候可以利用二分查找法达到 O(log(N)) 的时间复杂度,对范围查询支持也很好,但是插入的时候如果不是在数组尾部,就需要摞动后面所有的数据,时间复杂度为 O(N) 。所以有序数组只适合存储静态数据,例如几乎很少变动的配置数据,或者是历史数据。这里应该会有人有疑问:我用另外一种线性数据结构链表来替代数组不就可以解决数组插入因为要移动数据导致太慢的问题了么,要回答这个问题我们需要了解操作系统读取文件的流程,磁盘 IO 是一个相对很慢的操作,为了提高读取速度,我们应该尽量减少磁盘 IO 操作,而操作系统一般以 4kb 为一个数据页读取数据,而 MySQL 一般为 16kb 作为一个数据块,已经读取的数据块会在内存进行缓存,如果多次数据读取在同一个数据块,则只需要一次磁盘 IO ,而如果顺序一致的记录在文件中也是顺序存储的,就可以一次读取多个数据块,这样范围查询的速度也可以大大提升,显然链表没有这方面的优势。


    类似于 jdk 中的 hashmap ,哈希表通过一个特定的哈希函数将 key 值转换为一个固定的地址,然后将对应的 value 放到这个位置,如果发生哈希碰撞就在这个位置拉出一个链表,由于哈希函数的离散特性,所以经过哈希函数处理后的 key 将失去原有的顺序,所以哈希结构的索引无法满足范围查询,只适合等值查询的情况例如一些缓存的场景。


    二叉树在极端情况下会变成线性结构,也就是每个节点都只有左子节点或者只有右子节点,这样就无法利用二分查找只能从第一个节点开始向后遍历了,所以为了维持 O(log(N)) 的时间复杂度,我们需要在插入节点的时候对节点进行调整以保证树的平衡,所以平衡二叉树插入的时间复杂度也是 O(log(N)) ,二叉树只有两个子节点,如果数据量很大则树就很高,树的每一层一般不在同一个数据块中存储,为了尽量的减少磁盘读写次数,我们用N叉树来代替二叉树,在 MySQL 中这个N一般为 1200 ,这样树高是 4 的话也可以存储亿级别的数据,而且树的前面两层一般都在内存中, MySQL 中用到的 B+ 树,一般用非叶子节点构建索引,而叶子节点用来存储具体的值。

    MySql 的索引使用 B+ 树结构。在说 B+ 树之前,先说说 B 树,B 树是一个多路平衡查找树,相较于普通的二叉树,不会发生极度不平衡的状况,同时也是多路的。

    B 树的特点是:他会将数据也保存在非页子节点。

    B 树的特点是

    而这个特点会导致非页子节点不能存储大量的索引。

    而 B+ Tree 就是针对这个对 B tree 做了优化。如下图所示:

    B+ Tree 优化

    我们看到,B+ Tree 将所有的 data 数据都保存到了叶子节点中,非也子节点只保存索引和指针。

    我们假设一个非页子节点是 16kb,每个索引,即主键是 bigint,即 8b,指针为 8b。那么每页能存储大约 1000 个索引(16kb/ 8b + 8b).

    而一颗 3 层的 B+树能够存储多少索引呢?

     B+树能存储索引结构图

    通常 B+ 树的高度在 2-4 层,由于 MySql 在运行时,根节点是常驻内存的,因此每次查找只需要大约 2 -3 次 IO。可以说,B+ 树的设计,就是根据机械磁盘的特性来进行设计的。

    知道了索引的设计,我们能够知道另外一些信息:

    1. MySql 的主键不能太大,如果使用 UUID 这种,将会浪费 B+ 树的非叶子节点。

    2. MySql 的主键最好是自增的,如果使用 UUID 这种,每次插入都会调整 B+树,从而导致页分裂,严重影响性能。

    那么,如果项目中使用了分库分表,我们通常都会需要一个主键进行 sharding,那怎么办呢?

    在实现上,我们可以保留自增主键,而逻辑主键用来作为唯一索引即可

    Innodb中的索引数据结构是 B+ 树,数据是有序排列的,从根节点到叶子节点一层层找到对应的数据

    普通索引,也叫做辅助索引,叶子节点存放的是主键值。主键上的索引叫做聚集索引,表里的每一条记录都存放在主键的叶子节点上。

    当通过辅助索引select 查询数据的时候,会先在辅助索引中找到对应的主键值,然后用主键值在聚集索引中找到该条记录。举个例子,用name=Alice来查询的时候,会先找到对应的主键值是18 ,然后用18在下面的聚集索引中找到name=Alice的记录内容是 77 和 Alice。


    辅助索引聚集索引

    表中每一行的数据,是组织存放在聚集索引中的,所以叫做索引组织表

    InnoDB 中,有聚簇索引和普通索引之分

    • 聚簇索引根据主键来构建,叶子节点存放的是该主键对应的这一行记录

    • 普通索引根据申明这个索引时候的列来构建,叶子节点存放的是这一行记录对应的主键的值

    而普通索引中还有唯一索引和联合索引两个特例,

    • 唯一索引在插入和修改的时候会校验该索引对应的列的值是否已经存在

    • 联合索引将两个列的值按照申明时候的顺序进行拼接后在构建索引

    mysql索引存储结构

    数据是以行为单位存储在聚簇索引里的,根据主键查询可以直接利用聚簇索引定位到所在记录,根据普通索引查询需要先在普通索引上找到对应的主键的值,然后根据主键值去聚簇索引上查找记录,俗称回表

    普通索引上存储的值是主键的值,如果主键是一个很长的字符串并且建了很多普通索引,将造成普通索引占有很大的物理空间,这也是为什么建议使用 自增ID 来替代订单号作为主键,另一个原因是 自增ID 在插入的时候可以保证相邻的两条记录可能在同一个数据块,而订单号的连续性在设计上可能没有自增ID好,导致连续插入可能在多个数据块,增加了磁盘读写次数。

    如果我们查询一整行记录的话,一定要去聚簇索引上查找,而如果我们只需要根据普通索引查询主键的值,由于这些值在普通索引上已经存在,所以并不需要回表,这个称为索引覆盖,在一定程度上可以提高查询效率,由于联合索引上通过多个列构建索引,有时候我们可以将需要频繁查询的字段加到联合索引里面,例如如果经常需要根据 name 查找 age 我们可以建一个 name 和 age 的联合索引。

    查询的时候如果在索引上用了函数,将导致无法用到根据之前列上的值构建的索引,索引遵循最左匹配原则,所以如果需要查询某个列的值中间是否包含某个字符串,将无法利用索引,如果有这种需求可以利用全文索引,而如果查询是否以某个字符串开头就可以,联合索引根据第一个列查询可以用到索引,仅仅根据第二个列将无法用到索引,查询的时候用 IN 的效率高于 NOT = 。另外建议将索引的列设置为非空,这个和 NULL 字段的存储有关,下文在分析。

    索引查询操作


    select * from table where pId='11'

    如上图所示,从根开始,经过3次查找,就可以找到真实数据。如果不使用索引,那就要在磁盘上,进行逐行扫描,直到找到数据位置。显然,使用索引速度会快。但是在写入数据的时候,需要维护这颗B+树的结构,因此写入性能会下降! OK,接下来引入非聚簇索引!我们执行下面的语句

    create index index_name on table(name);

    大家注意看,会根据你的索引字段生成一颗新的B+树。因此, 我们每加一个索引,就会增加表的体积, 占用磁盘存储空间。然而,注意看叶子节点,非聚簇索引的叶子节点并不是真实数据,它的叶子节点依然是索引节点,存放的是该索引字段的值以及对应的主键索引(聚簇索引)。 如果我们执行下列语句

    select * from table where name='lisi'

    通过上图红线可以看出,先从非聚簇索引树开始查找,然后找到聚簇索引后。根据聚簇索引,在聚簇索引的B+树上,找到完整的数据! 那

    什么情况不去聚簇索引树上查询呢?

    还记得我们的非聚簇索引树上存着该索引字段的值么。如果,此时我们执行下面的语句

    select name from table where name='lisi'

    此时结构图如下


    如上图红线所示,如果在非聚簇索引树上找到了想要的值,就不会去聚簇索引树上查询。还记得,博主在《select的正确姿势》提到的索引问题么:

    当执行select col from table where col = ?,col上有索引的时候,效率比执行select * from table where col = ? 速度快好几倍!

    看完上面的图,你应该对这句话有更深层的理解了。

    那么这个时候,我们执行了下述语句,又会发生什么呢?

    create index index_birthday on table(birthday);

    看到了么,多加一个索引,就会多生成一颗非聚簇索引树。因此,很多文章才说,索引不能乱加。因为,有几个索引,就有几颗非聚簇索引树!你在做插入操作的时候,需要同时维护这几颗树的变化!因此,如果索引太多,插入性能就会下降!

    索引存储格式

    有了以上的索引知识我们在来分析数据是怎么存储的,InnoDB 存储引擎的逻辑存储结构从大到小依次可以分为:表空间、段、区、页、行。

    MySql 将数据按照页来存储,默认一页为 16kb,当你在查询时,不会只加载某一条数据,而是将这个数据所在的页都加载到 pageCache 中,这个其实和 OS 的就近访问原理类似

    表空间作为存储结构的最高层,所有数据都存放在表空间中默认情况下用一个共享表空间 ibdata1 ,如果开启了 innodb_file_per_table 则每张表的数据将存储在单独的表空间中,也就是每张表都会有一个文件

    表空间由各个段构成,InnoDB存储引擎由索引组织的,而索引中的叶子节点用来记录数据,存储在数据段,而非叶子节点用来构建索引,存储在索引段,而回滚段我们在后面分析锁的时候在聊。区是由连续的页组成,任何情况下一个区都是 1MB

    一个区中可以有多个页,每个页默认为 16KB ,所以默认情况下一个区中可以包含64个连续的页,页的大小是可以通过 innodb_page_size 设置,页中存储的是具体的行记录。一行记录最终以二进制的方式存储在文件里,我们要能够解析出一行记录中每个列的值,存储的时候就需要有固定的格式,至少需要知道每个列占多少空间,而 MySQL 中定义了一些固定长度的数据类型,例如 int、tinyint、bigint、char数组、float、double、date、datetime、timestamp 等,这些字段我们只需要读取对应长度的字节,然后根据类型进行解析即可,对于变长字段,例如 varchar、varbinary 等,需要有一个位置来单独存储字段实际用到的长度,当然还需要头信息来存储元数据,例如记录类型,下一条记录的位置等。下面我们以 Compact 行格式分析一行数据在 InnoDB 中是怎么存储的。

    • 变长字段长度列表,该位置用来存储所申明的变长字段中非空字段实际占有的长度列表,例如有3个非空字段,其中第一个字段长度为3,第二个字段为空,第三个字段长度为1,则将用 01 03 表示,为空字段将在下一个位置进行标记。变长字段长度不能超过 2 个字节,所以 varchar 的长度最大为 65535。

    • NULL 标志位,占 1 个字节,如果对应的列为空则在对应的位上置为 1 ,否则为 0 ,由于该标志位占一个字节,所以列的数量不能超过 255。如果某字段为空,在后面具体的列数据中将不会在记录。这种方式也导致了在处理索引字段为空的时候需要进行额外的操作。

    • 记录头信息,固定占 5 字节,包含下一条记录的位置,该行记录总长度,记录类型,是否被删除,对应的 slot 信息等

    • 列数据 包含具体的列对应的值,加上两个隐藏列,事务 ID 列和回滚指针列。如果没有申明主键,还会增加一列记录内部 ID。

    InnoDB 的数据页由以下 7 个部分组成:

    • 文件头(File Header) 固定 38 个字节 (页的位置,上一页下一页位置,checksum , LSN)

    • 数据页头( Page Header)固定 56 个字节 包含slot数目,可重用空间起始地址,第一个记录地址,记录数,最大事务ID等

    • 虚拟的最大最小记录 (Infimum + Supremum Record)

    • 用户记录 (User Records) 包含已经删除的记录以链表的形式构成可重用空间

    • 待分配空间 (Free spaces) 未分配的空间

    • 页目录 (Page Directory) slot 信息,下面单独介绍

    • 文件尾 (File Trailer) 固定8个字节,用来保证页的完整性


    索引的基础知识 页结构

    页目录里维护多个 slot ,一个 slot 包含多个行记录。每个 slot 占 2 个字节,记录这个 slot 里的行记录相对页初始位置的偏移量。由于索引只能定位到数据页,而定位到数据页内的行记录还需要在内存中进行二分查找,而这个二分查找就需要借助 slot 信息,先找到对应的 slot ,然后在 slot 内部通过数据行中记录头里的下一个记录地址进行遍历。每一个 slot 可以包含 4 到 8 个数据行。如果没有 slot 辅助,链表本身是无法进行二分查找的。

    排序

    排序有好多种算法来实现,在 MySQL 中经常会带上一个 limit ,表示从排序后的结果集中取前 100 条,或者取第 n 条到第 m 条,要实现排序,我们需要先根据查询条件获取结果集,然后在内存中对这个结果集进行排序,如果结果集数量特别大,还需要将结果集写入到多个文件里,然后单独对每个文件里的数据进行排序,然后在文件之间进行归并,排序完成后在进行 limit 操作。没错,这个就是 MySQL 实现排序的方式,前提是排序的字段没有索引。

    CREATE TABLE `person` (
      `id` int(11) NOT NULL,
      `city` varchar(16) NOT NULL,
      `name` varchar(16) NOT NULL,
      `age` int(11) NOT NULL,
      `addr` varchar(128) DEFAULT NULL,
      PRIMARY KEY (`id`),
      KEY `city` (`city`)
    ) ENGINE=InnoDB;
    
    select city,name,age from person where city='武汉' order by name limit 100  ;

    使用 explain 发现该语句会使用 city 索引,并且会有 filesort . 我们分析下该语句的执行流程

        1.初始化 sortbuffer ,用来存放结果集

        2.找到 city 索引,定位到 city 等于武汉的第一条记录,获取主键索引ID

        3.根据 ID 去主键索引上找到对应记录,取出 city,name,age 字段放入 sortbuffer

        4.在 city 索引取下一个 city 等于武汉的记录的主键ID

        5.重复上面的步骤,直到所有 city 等于武汉的记录都放入 sortbuffer

        6.对 sortbuffer 里的数据根据 name 做快速排序

        7.根据排序结果取前面 1000 条返回

    这里是查询 city,name,age 3个字段,比较少,如果查询的字段较多,则多个列如果都放入 sortbuffer 将占有大量内存空间,另一个方案是只区出待排序的字段和主键放入 sortbuffer 这里是 name 和 id ,排序完成后在根据 id 取出需要查询的字段返回,其实就是时间换取空间的做法,这里通过 max_length_for_sort_data 参数控制,是否采用后面的方案进行排序。

    另外如果 sortbuffer 里的条数很多,同样会占有大量的内存空间,可以通过参数 sort_buffer_size 来控制是否需要借助文件进行排序,这里会把 sortbuffer 里的数据放入多个文件里,用归并排序的思路最终输出一个大的文件。

    以上方案主要是 name 字段没有加上索引,如果 name 字段上有索引,由于索引在构建的时候已经是有序的了,所以就不需要进行额外的排序流程只需要在查询的时候查出指定的条数就可以了,这将大大提升查询速度。我们现在加一个 city 和 name 的联合索引。

    alter table person add index city_user(city, name);

    这样查询过程如下:

    1.根据 city,name 联合索引定位到 city 等于武汉的第一条记录,获取主键索引ID

    2.根据 ID 去主键索引上找到对应记录,取出 city,name,age 字段作为结果集返回

    3.继续重复以上步骤直到 city 不等于武汉,或者条数大于 1000

    由于联合所以在构建索引的时候,在 city 等于武汉的索引节点中的数据已经是根据 name 进行排序了的,所以这里只需要直接查询就可,另外这里如果加上 city, name, age 的联合索引,则可以用到索引覆盖,不行到主键索引上进行回表。

    总结一下,我们在有排序操作的时候,最好能够让排序字段上建有索引,另外由于查询第一百万条开始的一百条记录,需要过滤掉前面一百万条记录,即使用到索引也很慢,所以可以根据 ID 来进行区分,分页遍历的时候每次缓存上一次查询结果最后一条记录的 id , 下一次查询加上 id > xxxx limit 0,1000 这样可以避免前期扫描到的结果被过滤掉的情况。

    InnoDB 存储模型

    InnoDB 通过一些列后台线程将相关操作进行异步处理,如下图所示,同时借助缓冲池来减小 CPU 和磁盘速度上的差异。

    当查询的时候会先通过索引定位到对应的数据页,然后检测数据页是否在缓冲池内,如果在就直接返回,如果不在就去聚簇索引中通过磁盘 IO 读取对应的数据页并放入缓冲池。

    一个数据页会包含多个数据行。

    缓存池通过 LRU 算法对数据页进行管理,也就是最频繁使用的数据页排在列表前面,不经常使用的排在队尾,当缓冲池满了的时候会淘汰掉队尾的数据页。

    从磁盘新读取到的数据页并不会放在队列头部而是放在中间位置,这个中间位置可以通过参数进行修。

    缓冲池也可以设置多个实例,数据页根据哈希算法决定放在哪个缓冲池。

    InnoDB 在更新数据的时候会采用 WAL 技术,也就是 Write Ahead Logging ,这个日志就是 redolog 用来保证数据库宕机后可以通过该文件进行恢复。这个文件一般只会顺序写,只有在数据库启动的时候才会读取 redolog 文件看是否需要进行恢复。该文件记录了对某个数据页的物理操作,例如某个 sql 把某一行的某个列的值改为 10 ,对应的 redolog 文件格式可能为:把第5个数据页中偏移量为99的位置写入一个值 10 。

    redolog 不是无限大的,他的大小是可以配置的,并且是循环使用的,例如配置大小为 4G ,一共 4 个文件,每个文件 1G 。首先从第一个文件开始顺序写,写到第四个文件后在从第一个文件开始写,类似一个环,用一个后台线程把 redolog 里的数据同步到聚簇索引上的数据页上。写入 redolog 的时候不能将没有同步到数据页上的记录覆盖,如果碰到这种情况会停下来先进行数据页同步然后在继续写入 redolog 。另外执行更新操作的时候,会先更新缓冲池里的数据页,然后写入 redolog , 这个时候真正存储数据的地方还没有更新,也就是说这时候缓冲池中的数据页和磁盘不一致,这种数据页称为脏页,当脏页由于内存不足或者其他原因需要丢弃的时候,一定要先将该脏页对应的redolog 刷新到磁盘里的真实数据页,不然下次查询的时候由于 redolog 没有同步到磁盘,而查询直接通过索引定位到数据页就会查询出脏数据。


    更新的时候先从磁盘或者缓冲池中读取对应的数据页,然后对数据页里的数据进行更改并生成 redolog 到对应的缓冲池(redolog buffer)进行缓存,当事务提交的时候将缓存写入到 redolog 的物理磁盘文件上。这里由于操作系统的文件写入 InnoDB 并没有使用 O_DIRECT 直接写入到文件,为了保证性能而是先写入操作系统的缓存,之后在进行 flush ,所以事务提交的时候 InnoDB 需要在调用一次 fsync 的系统调用来确保数据落盘。为了提高性能 InnoDB 可以通过参数 innodb_flush_log_at_trx_commit 来控制事务提交时是否强制刷盘。

    • 1(默认值) ,事务每次提交都需要调用 fsync 进行刷盘,

    • 0 表示事务提交的时候不会调用 redolog 的文件写入,通过后台线程每秒同步一次,

    • 2 表示事务提交的时候会写入文件但是只保证写入操作系统缓存,不进行 fsync 操作。

    redolog 文件只会顺序写,所以磁盘操作性能不会太慢,所以建议生产环境都设置为1,以防止数据库宕机导致数据丢失。


    在执行更新逻辑的时候还会写入另外一个日志:undolog 。这个文件存储在共享表空间中,也就是即使打开了 innodb_file_per_table 参数,所有的表的 undolog 都存储在同一个文件里。该文件主要用来做事务回滚和 MVCC 。undolog 是逻辑日志,也就是他不是记录的将物理的数据页恢复到之前的状态,而是记录的和原 sql 相反的 sql , 例如 insert 对应 delete , delete 对应 insert ,update 对应另外一个 update 。事务回滚很好理解,执行相反的操作回滚到之前的状态,而 MVCC 是指镜像读,当一个事务需要查询某条记录,而该记录已经被其他事务修改,但该事务还没提交,而当前事务可以通过 undolog 计算到之前的值。这里我们只需要知道和 redolog 一样, undolog 也是需要在执行 update 语句的时候在事务提交前需要写入到文件的。另外 undolog 的写入也会有对应的 redolog ,因为 undolog 也需要持久化,通过 WAL 可以提高效率。这里可以总结下,在事务提交的时候要保证 redolog 写入到文件里,而这个 redolog 包含 主键索引上的数据页的修改,以及共享表空间的回滚段中 undolog 的插入。另外 undolog 的清理通过一个后台线程定时处理,清理的时候需要判断该 undolog 是否所有的事务都不会用到。

    熟悉 MySQL 的都知道,他通过 binlog 来进行高可用,也就是通过 binlog 来将数据同步到集群内其他的 MySQL 实例。

    binlog 和 redolog 的区别是

    • binlog是在存储引擎上层 Server 层写入的,他记录的是逻辑操作,也就是对应的 sql 

    • redolog 记录的底层某个数据页的物理操作

    • redolog 是循环写的

    • binlog 是追加写的,不会覆盖以前写的数据。而binlog 也需要在事务提交前写入文件。binlog 的写入页需要通过 fsync 来保证落盘,为了提高 tps ,MySQL 可以通过参数 sync_binlog 来控制是否需要同步刷盘,该策略会影响当主库宕机后备库数据可能并没有完全同步到主库数据。

    由于事务的原子性,需要保证事务提交的时候 redolog 和 binlog 都写入成功,所以 MySQL 执行层采用了两阶段提交来保证 redolog 和 binlog 都写入成功后才 commit,如果一方失败则会进行回滚。

    下面我们理一下一条 update 语句的执行过程:

    update person set age = 30 where id = 1;

    1.分配事务 ID ,开启事务,获取锁,没有获取到锁则等待。

    2.执行器先通过存储引擎找到 id = 1 的数据页,如果缓冲池有则直接取出,没有则去主键索引上取出对应的数据页放入缓冲池。

    3.在数据页内找到 id = 1 这行记录,取出,将 age 改为 30 然后写入内存

    4.生成 redolog undolog 到内存,redolog 状态为 prepare

    5.将 redolog undolog 写入文件并调用 fsync

    6.server 层生成 binlog 并写入文件调用 fsync

    7.事务提交,将 redolog 的状态改为 commited 释放锁


    MySQL数据库建立索引的事项及提高性能的手段

    1. 对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

    2. 应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:select id from t where num=0

    3. 应尽量避免在 where 子句中使用!=或<>操作符,否则引擎将放弃使用索引而进行全表扫描。

    4. 应尽量避免在 where 子句中使用or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num=10 or num=20可以这样查询:select id from t where num=10 union all select id from t where num=20

    5. in 和 not in 也要慎用,否则会导致全表扫描,如:select id from t where num in(1,2,3) 对于连续的数值,能用 between 就不要用 in 了:select id from t where num between 1 and 3

    6. 避免使用通配符。下面的查询也将导致全表扫描:select id from t where name like ‘李%’若要提高效率,可以考虑全文检索。

    7. 如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:select id from t where num=@num可以改为强制查询使用索引:select id from t with(index(索引名)) where num=@num

    8. 应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:select id from t where num/2=100应改为:select id from t where num=100*2

    9. 应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:select id from t where substring(name,1,3)=’abc’ ,name以abc开头的id应改为:select id from t where name like ‘abc%’

    10. 不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

    11. 在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。

    12. 不要写一些没有意义的查询,如需要生成一个空表结构:select col1,col2 into #t from t where 1=0 这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:create table #t(…)

    13. 很多时候用 exists 代替 in 是一个好的选择:select num from a where num in(select num from b)用下面的语句替换:select num from a where exists(select 1 from b where num=a.num)

    14. 并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。

    15. 索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了insert 及 update 的 效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要。

    16. 应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储 顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。

    17. 尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

    18. 尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

    19. 任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

    20. 尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

    21. 避免频繁创建和删除临时表,以减少系统表资源的消耗。

    22. 临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。

    23. 在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

    24. 如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

    25. 尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。

    26. 使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。

    27. 与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。

    28. 在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF。无需在执行存储过程和触发器的每个语句后向客户端发送DONE_IN_PROC 消息。

    29. 尽量避免大事务操作,提高系统并发能力。

    30. 尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。


    参考文章:

    MySql 三大知识点——索引、锁、事务 https://zhuanlan.zhihu.com/p/59764376

    千万级MySQL数据库建立索引,提高性能的秘诀 https://zhuanlan.zhihu.com/p/80600549




    转载本站文章《再谈mysql索引—索引建立、存储结构、存储格式、存储模型》,
    请注明出处:https://www.zhoulujun.cn/html/DB/mysql/2019_1014_8172.html